ADMB Documentation  -a65f1c97
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
df1b2gh.cpp
Go to the documentation of this file.
1 /*
2  * $Id$
3  *
4  * Author: David Fournier
5  * Copyright (c) 2008-2012 Regents of the University of California
6  */
11 #include <admodel.h>
12 #include <df1b2fun.h>
13 #include <adrndeff.h>
14 #ifndef OPT_LIB
15  #include <cassert>
16  #include <climits>
17 #endif
18 
24  const dvector& u0,const dmatrix& Hess,const dvector& _xadjoint,
25  const dvector& _uadjoint,const dmatrix& _Hessadjoint,
26  function_minimizer * pmin)
27 {
28  ADUNCONST(dvector,xadjoint)
29  ADUNCONST(dvector,uadjoint)
30  //ADUNCONST(dmatrix,Hessadjoint)
31 #if !defined(OPT_LIB) && (__cplusplus >= 201103L)
32  const int xs = [](unsigned int size)->int
33  {
34  assert(size <= INT_MAX);
35  return static_cast<int>(size);
36  }(x.size());
37  const int us = [](unsigned int size)->int
38  {
39  assert(size <= INT_MAX);
40  return static_cast<int>(size);
41  }(u0.size());
42 #else
43  const int xs = static_cast<int>(x.size());
44  const int us = static_cast<int>(u0.size());
45 #endif
47  int nsc=pmin->lapprox->num_separable_calls;
48  const ivector lrea = (*pmin->lapprox->num_local_re_array)(1,nsc);
49  int hroom = sum(square(lrea));
50  int nvar = xs + us + hroom;
51  independent_variables y(1,nvar);
52 
53  // need to set random effects active together with whatever
54  // init parameters should be active in this phase
57  /*int onvar=*/initial_params::nvarcalc();
58  initial_params::xinit(y); // get the initial values into the
59  // do we need this next line?
60  y(1,xs)=x;
61 
62  // contribution for quadratic prior
64  {
65  //Hess+=quadratic_prior::get_cHessian_contribution();
66  int & vxs = (int&)(xs);
68  }
69  // Here need hooks for sparse matrix structures
70 
71  dvar3_array & block_diagonal_vhessian=
73  block_diagonal_vhessian.initialize();
74  dvar3_array& block_diagonal_ch=
76  //dvar3_array(*pmin->lapprox->block_diagonal_ch);
77  int ii=xs+us+1;
79  for (int ic=1;ic<=nsc;ic++)
80  {
81  int lus=lrea(ic);
82  for (int i=1;i<=lus;i++)
83  for (int j=1;j<=lus;j++)
84  y(ii++)=bdH(ic)(i,j);
85  }
86 
87  dvector g(1,nvar);
88  gradcalc(0,g);
91  //initial_params::stddev_vscale(d,vy);
92  ii=xs+us+1;
94  {
95  cerr << "can't do importance sampling with bounded random effects"
96  " at present" << endl;
97  ad_exit(1);
98  }
99  else
100  {
101  for (int ic=1;ic<=nsc;ic++)
102  {
103  int lus=lrea(ic);
104  if (lus>0)
105  {
106  for (int i=1;i<=lus;i++)
107  {
108  for (int j=1;j<=lus;j++)
109  {
110  block_diagonal_vhessian(ic,i,j)=vy(ii++);
111  }
112  }
113  block_diagonal_ch(ic)=
114  choleski_decomp(inv(block_diagonal_vhessian(ic)));
115  }
116  }
117  }
118 
119  int nsamp=pmin->lapprox->use_gauss_hermite;
121  dvar_vector sample_value(1,nsamp);
122  sample_value.initialize();
123 
124  dvar_vector tau(1,us);;
125  // !!! This only works for one random efect in each separable call
126  // at present.
127  for (int is=1;is<=nsamp;is++)
128  {
129  int offset=0;
130  pmin->lapprox->num_separable_calls=0;
131  pmin->lapprox->gh->is=is;
132  for (int ic=1;ic<=nsc;ic++)
133  {
134  int lus=lrea(ic);
135  // will need vector stuff here when more than one random effect
136  if (lus>1)
137  {
138  cerr << "error not implemented" << endl;
139  ad_exit(1);
140  }
141  if (lus>0)
142  {
143  tau(offset+1,offset+lus).shift(1)=block_diagonal_ch(ic)(1,1)*
144  pmin->lapprox->gh->x(is);
145  offset+=lus;
146  }
147  }
148 
149  // have to reorder the terms to match the block diagonal hessian
150  imatrix & ls=*(pmin->lapprox->block_diagonal_re_list);
151  int mmin=ls.indexmin();
152  int mmax=ls.indexmax();
153 
154  ii=1;
155  for (int i=mmin;i<=mmax;i++)
156  {
157  int cmin=ls(i).indexmin();
158  int cmax=ls(i).indexmax();
159  for (int j=cmin;j<=cmax;j++)
160  {
161  vy(ls(i,j))+=tau(ii++);
162  }
163  }
164  if (ii-1 != us)
165  {
166  cerr << "error in interface" << endl;
167  ad_exit(1);
168  }
169  initial_params::reset(vy); // get the values into the model
170  ii=1;
171  for (int i=mmin;i<=mmax;i++)
172  {
173  int cmin=ls(i).indexmin();
174  int cmax=ls(i).indexmax();
175  for (int j=cmin;j<=cmax;j++)
176  {
177  vy(ls(i,j))-=tau(ii++);
178  }
179  }
180 
182  pmin->AD_uf_outer();
183  }
184 
185  nsc=pmin->lapprox->num_separable_calls;
186 
188 
189  int sgn=0;
190  dvariable ld=0.0;
192  {
193  for (int ic=1;ic<=nsc;ic++)
194  {
195  if (allocated(block_diagonal_vhessian(ic)))
196  {
197  ld+=ln_det(block_diagonal_vhessian(ic),sgn);
198  }
199  }
200  ld*=0.5;
201  }
202  else
203  {
204  for (int ic=1;ic<=nsc;ic++)
205  {
206  if (allocated(block_diagonal_vhessian(ic)))
207  {
208  ld+=ln_det_choleski(block_diagonal_vhessian(ic));
209  }
210  }
211  ld*=0.5;
212  }
213 
214  vf+=ld;
215  //vf+=us*0.91893853320467241;
216 
217  double f=value(vf);
218  gradcalc(nvar,g);
219 
220  // put uhat back into the model
222  vy(xs+1,xs+us).shift(1)=u0;
223  initial_params::reset(vy); // get the values into the model
225 
227 
228  ii=1;
229  for (int i=1;i<=xs;i++)
230  xadjoint(i)=g(ii++);
231  for (int i=1;i<=us;i++)
232  uadjoint(i)=g(ii++);
233  for (int ic=1;ic<=nsc;ic++)
234  {
235  int lus=lrea(ic);
236  for (int i=1;i<=lus;i++)
237  {
238  for (int j=1;j<=lus;j++)
239  {
240  (*pmin->lapprox->block_diagonal_vhessianadjoint)(ic)(i,j)=g(ii++);
241  }
242  }
243  }
244  return f;
245 }
laplace_approximation_calculator * lapprox
Definition: admodel.h:1862
int indexmax() const
Definition: imatrix.h:142
Description not yet available.
Definition: imatrix.h:69
static void set_NO_DERIVATIVES(void)
Disable accumulation of derivative information.
Definition: gradstrc.cpp:641
Description not yet available.
dvar_vector & shift(int min)
Description not yet available.
Definition: fvar_arr.cpp:28
static void set_active_random_effects(void)
Definition: model.cpp:267
int indexmin() const
Definition: imatrix.h:138
#define x
int allocated(const ivector &v)
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
Definition: fvar_a59.cpp:13
#define ADUNCONST(type, obj)
Creates a shallow copy of obj that is not CONST.
Definition: fvar.hpp:140
Vector of double precision numbers.
Definition: dvector.h:50
void initialize(void)
Description not yet available.
Definition: f3arr.cpp:17
double sum(const d3_array &darray)
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
Definition: d3arr.cpp:21
gauss_hermite_stuff * gh
Definition: adrndeff.h:223
exitptr ad_exit
Definition: gradstrc.cpp:53
static dvariable reset(const dvar_vector &x)
Definition: model.cpp:345
dvariable do_gauss_hermite_integration(void)
Definition: xmodelm5.cpp:12
ADMB variable vector.
Definition: fvar.hpp:2172
void gradcalc(int nvar, const dvector &g)
Definition: sgradclc.cpp:77
df1_one_matrix choleski_decomp(const df1_one_matrix &MM)
Definition: df11fun.cpp:606
static int nvarcalc()
Definition: model.cpp:152
ivector sgn(const dvector &v)
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
Definition: dvect24.cpp:11
static int no_ln_det_choleski_flag
Definition: fvar.hpp:8841
dvar3_array * block_diagonal_vch
Definition: adrndeff.h:228
prnstream & endl(prnstream &)
Description not yet available.
Definition: fvar.hpp:1937
Array of integers(int) with indexes from index_min to indexmax.
Definition: ivector.h:50
static objective_function_value * pobjfun
Definition: admodel.h:2394
Description not yet available.
static void xinit(const dvector &x)
Definition: model.cpp:226
Description not yet available.
Definition: fvar.hpp:2819
Description not yet available.
Definition: fvar.hpp:4197
d3_array * block_diagonal_vhessianadjoint
Definition: adrndeff.h:232
double ln_det(const dmatrix &m1, int &sgn)
Compute log determinant of a constant matrix.
Definition: dmat3.cpp:536
unsigned int size() const
Get number of elements in array.
Definition: dvector.h:209
dvar3_array * block_diagonal_vhessian
Definition: adrndeff.h:233
double do_gauss_hermite_block_diagonal(const dvector &x, const dvector &u0, const dmatrix &Hess, const dvector &_xadjoint, const dvector &_uadjoint, const dmatrix &_Hessadjoint, function_minimizer *pmin)
Description not yet available.
Definition: df1b2gh.cpp:23
static int have_bounded_random_effects
Definition: df1b2fun.h:1353
virtual void AD_uf_outer()
Definition: xmodelm4.cpp:39
double ln_det_choleski(const banded_symmetric_dmatrix &MM, int &ierr)
Definition: dmat38.cpp:218
Description not yet available.
Description not yet available.
Definition: admodel.h:1850
static void set_YES_DERIVATIVES(void)
Enable accumulation of derivative information.
Definition: gradstrc.cpp:650
static void get_cHessian_contribution(dmatrix, int)
Description not yet available.
Definition: quadpri.cpp:591
void initialize(const dvector &ww)
Description not yet available.
Definition: fvar_a24.cpp:63
dvector value(const df1_one_vector &v)
Definition: df11fun.cpp:69
Description not yet available.
Definition: fvar.hpp:3727
static int get_num_quadratic_prior(void)
Definition: df1b2fun.h:1916
double square(const double value)
Return square of value; constant object.
Definition: d3arr4.cpp:16
Fundamental data type for reverse mode automatic differentiation.
Definition: fvar.hpp:1518
df1_one_variable inv(const df1_one_variable &x)
Definition: df11fun.cpp:384
static void set_inactive_only_random_effects(void)
Definition: model.cpp:259