28 for (
int k=1;k<=m;k++)
33 for (
int j=1;j<=n;j++)
41 for (
int i=j+1;i<=n;i++)
69 for (
int k=1;k<=m;k++)
73 for (
int j=1;j<=n;j++)
79 for (
int i=j+1;i<=n;i++)
106 for (
int k=1;k<=m;k++)
111 for (
int j=1;j<=n;j++)
119 for (
int i=j+1;i<=n;i++)
147 for (
int k=1;k<=m;k++)
151 for (
int j=1;j<=n;j++)
157 for (
int i=j+1;i<=n;i++)
193 for (
int j=1;j<=n;j++)
201 for (
int i=j+1;i<=n;i++)
228 for (
int k=1;k<=m;k++)
232 for (
int j=1;j<=n;j++)
238 for (
int i=j+1;i<=n;i++)
264 for (
int k=1;k<=m;k++)
268 for (
int j=1;j<=n;j++)
274 for (
int i=j+1;i<=n;i++)
double ghk(const dvector &lower, const dvector &upper, const dmatrix &Sigma, const dmatrix &eps)
Description not yet available.
double ghk_choleski(const dvector &lower, const dvector &upper, const dmatrix &ch, const dmatrix &eps)
double inv_cumd_norm(const double &x)
Description not yet available.
dvariable ghk_m(const dvar_vector &upper, const dvar_matrix &Sigma, const dmatrix &eps)
Description not yet available.
df1_one_matrix choleski_decomp(const df1_one_matrix &MM)
double inv_cumd_logistic(const double &x)
Description not yet available.
void RETURN_ARRAYS_INCREMENT()
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
static _THREAD gradient_structure * _instance
Description not yet available.
dvariable ghk_choleski_m(const dvar_vector &upper, const dvar_matrix &ch, const dmatrix &eps)
Description not yet available.
Class definition of matrix with derivitive information .
double inv_cumd_cauchy(const double &x)
Description not yet available.
double cumd_cauchy(const double &x)
Description not yet available.
void ghk_test(const dmatrix &eps, int i)
Description not yet available.
void RETURN_ARRAYS_DECREMENT()
double cumd_logistic(const double &x)
Description not yet available.
class for things related to the gradient structures, including dimension of arrays, size of buffers, etc.
dvariable ghk_choleski_m_cauchy(const dvar_vector &upper, const dvar_matrix &ch, const dmatrix &eps)
Description not yet available.
double cumd_norm(const double &x)
Culative normal distribution; constant objects.
Fundamental data type for reverse mode automatic differentiation.
dvariable ghk_choleski_m_logistic(const dvar_vector &upper, const dvar_matrix &ch, const dmatrix &eps)
Description not yet available.