ADMB Documentation  -a65f1c97
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
vbetacf.cpp
Go to the documentation of this file.
1 
9 #include <fvar.hpp>
10 #include "betacf_val.hpp"
11 
12 dvariable betacf(const dvariable& a, const dvariable& b, const dvariable& x, int MAXIT)
13 {
14  typedef tiny_ad::variable<1, 3> Float;
15  Float a_ (value(a), 0);
16  Float b_ (value(b), 1);
17  Float x_ (value(x), 2);
18  Float ans = betacf<Float>(a_, b_, x_, MAXIT);
19  tiny_vec<double, 3> der = ans.getDeriv();
20 
21  dvariable hh;
22  value(hh) = ans.value;
24  &(value(a)), der[0] ,&(value(b)), der[1], &(value(x)), der[2]);
25  return hh;
26 }
#define x
void default_evaluation3ind(void)
Description not yet available.
Definition: def_eval.cpp:174
void set_gradient_stack(void(*func)(void), double *dep_addr, double *ind_addr1=NULL, double mult1=0, double *ind_addr2=NULL, double mult2=0)
Description not yet available.
Definition: fvar.hpp:1045
#define MAXIT
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
Float betacf(Float a, Float b, Float x, int MAXIT)
Definition: betacf_val.hpp:13
dvector value(const df1_one_vector &v)
Definition: df11fun.cpp:69
static _THREAD grad_stack * GRAD_STACK1
Fundamental data type for reverse mode automatic differentiation.
Definition: fvar.hpp:1518