70 result(i) = m1(i) + m2(i);
90 result(i) = m1(i) - m2(i);
110 result(i) = d + m2(i);
131 result(i) = d - m2(i);
d3_array elem_prod(const d3_array &a, const d3_array &b)
Returns d3_array results with computed elements product of a(i, j, k) * b(i, j, k).
void allocate(int sl, int sh, int nrl, int nrh, int ncl, int nch)
Allocate variable vector of matrices with dimensions [sl to sh] x ([nrl to nrh] x [ncl to nch]) where...
d3_array operator-(const d3_array &a, const d3_array &b)
Returns d3_array results with computed elements addition of a(i, j, k) + b(i, j, k).
d3_array operator+(const d3_array &a, const d3_array &b)
Returns d3_array results with computed elements addition of a(i, j, k) + b(i, j, k).
d3_array elem_div(const d3_array &a, const d3_array &b)
Returns d3_array results with computed elements division of a(i, j, k) / b(i, j, k).
dmatrix operator*(const d3_array &t, const dvector &v)
Description not yet available.
void RETURN_ARRAYS_INCREMENT()
Author: David Fournier Copyright (c) 2008-2012 Regents of the University of California.
static _THREAD gradient_structure * _instance
Description not yet available.
void RETURN_ARRAYS_DECREMENT()
class for things related to the gradient structures, including dimension of arrays, size of buffers, etc.
Description not yet available.
Fundamental data type for reverse mode automatic differentiation.